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Abstract. Electronic transmittance in a one-dimensional tight-binding incommensurate 
potential has been studied numerically for states in the vicinity of the mobility edge by 
multifractal analysis. Multifractal analysis shows a spectrum of scaling exponents for the 
normalized transmittance (over the system size) near the transition from extended to 
localized states. For the clitical states we have computed dimensionless resistance related 
through the Landauer formula and shown lhat it does not have an exponential nature. 

1. Introduction 

Electronic states in incommensurate potentials exhibit some novel features that are 
distinct compared with those for periodic and random potentials. Several investigations 
have been carried out for a one-dimensional tight-binding model (Harper 1955, Aubry 
and Andre 1980, Kohmoto 1983, Ostlund and Pandit 1984, Basu et al1991a): 

vy,+~ + "-1 + Vn(Q)Vu. = m n  (1) 

where lYnI2 is the local probability amplitude, V,(Q) is the site diagonal potential with 
Q being an irrational number and E is the energy. For various forms of V,(Q) ,  the 
propertiesof the wavefunctions, their phases, the energy spectra and electronic transport 
have been studied so far mostly by numerical techniques (Kohmoto 1983, Ostlund and 
Pandit 1984, Basu eta1 1991a). 

The model defined by V,(Q) = A cos(hnQ), which is known as the Harper model 
(Harper 1955, Aubry and Andre 1980), undergoes a metal-insulator transition such that 
the states for A < 2 are extended, those for A > 2 are localized and the state at A = 2 
becomes critical. Standard techniques like evaluation of Lyapunov exponents or the 
participation ratio do not seem to be appropriate for the characterization of the novel 
features present in the critical state. These have also been found in the Fibonacci model 
potential in one dimension. 

In recent yearsamultifractalanalysisforthecharacterizationofsuchstatesinvarious 
quasi-periodic model potentials has been proposed. This clearly distinguishes the critical 
state (its energy spectra, integrated density of states, probability amplitudes) from 
extended or localized states (Aubry and Andre 1980, Kohmoto et a1 1983, Kohmoto 
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1983). A class of more general model potentials has also been introduced, which exhibits 
an energy-dependent transition (mobility edge) in one-dimensional systems (Soukoulis 
and Economou 1982, Hiramoto and Kohmoto 1989, Das Sarma et a1 1990). These 
potentials are deterministic and yet different in their behaviour from random potentials 
in the sense that, in one dimension, all eigenfunctions are not localized. Instead there 
appear metal-insulator transitions separating extended and localized states. The poten- 
tial V,(y, Q) = A cos(2znyQ) having an inhomogeneous period QnY-I has been of much 
interest in recent years (Griniasty and Fishman 1988, Thouless 1988, Das Sarma et a1 
1990, Basu etal 1991a). It exhibits the following properties. 

(i) It hasmobilityedges for0 < y < 1,2 > A  (DasSarma eta1 1990, Basuefal1991a). 
(ii) All states (except states at the band centre) for 1 < y < 2 are localized. But the 

nature ofthe localized state at the band centre is different in the sense that the Lyapunov 
exponent vanishes very slowly there, as discussed by Thouless (Hiramoto and Kohmoto 
1989). Localization in this system is different from purely exponential localization as in 
random chains. 

(iii) Exponential localization as in a random system is shown by perturbative cal- 
culation for y 2 2 (Griniasty and Fishman 1988). 

Recently Das Sarmaef a1 (1990) have calculated thewavefunction, electronicdensity 
of states and Lyapunov exponent for the above model in the regime 0 < y < 1, which 
shows an energy-dependent transition at E = (2 - A) .  We have studied electronic trans- 
mittanceand the phase oftheoutgoing electronfor the above model potentialindifferent 
energy regimes, with special emphasis on stages near the mobility edge (Basu et a1 
1991a). Fractal aspects for the spatial extension of the wavefunction have also been 
discussed before for one-dimensional disordered systems (Soukoulis and Economou 
1989, Roman and Wiecko 1986). The model potential V J y ,  Q)  = A cos(2znyQ) for 
0 < y < 1 is interesting in the sense that it has a gapless spectrum with a mobility 
edge even in one dimension. We have used the transfer-matrix method to study the 
transmittance for an electron through chains (of sizes -lo5) with such a potential and 
attached in perfectly conducting leads or wires at both ends. The transmittance at 
the far end of the chain carries information of the effective scattering due to the 
incommensurate potential through the scattering matrix, which connects the solution 
on the two conducting sides of the chain. 

In a series of earlier works (Aoki 1983,1986, Schreiber 198Sa, b, 1990, Kramer era1 
1988, Ono et a1 1989) it was asserted that the wavefunctions in random potentials were 
fractals. However, since they had studied the inverse participation ratio alone, their 
analysis could not probe the multifractal nature of these objects. In a recent com- 
munication Schreiber and Grussbach (1991) have carried out a multifractal analysis of 
one critical wavefunction in a three-dimensional random potential and one localized 
wavefunction in a one-dimensional random chain, for a single system size each. They 
have concluded that both the critical and the localized states are multifractal and 
comment ‘it will therefore be an interesting problem to investigate whether the metal- 
insulator transition can be identified from such an analysis in some way’. In an earlier 
work on Azbel resonances (Basu etal 1991a) we have shown that the behaviour of the 
f(a) versus acurves as functions of system size clearly distinguishes between extended, 
localized and resonant states. Further, this analysis doesnot dependonindividualstates, 
but is a common feature of all similar states. In this communication we suggest this 
procedure to be a sensitive test to differentiate between extended, critical and localized 
states. 

P K Thakur et ai 
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2. Formalism 

2.1. Transfer-matrix method 

Equation (1) can be written alternatively in terms of a transfer matrix at the site n as 

M,(Y, Q)% = en+l (2)  

and V,(y, Q) = A cos(2znYQ) where Q is an irrational number for our work chosen to 
be (d5 - 1)/2. The wavefunction amplitudes at the sites N - 1 and Nare related to the 
initial points 0 and 1 through the following relation: 

(‘N. ) = Py(Q, E )  (‘I) 
VN-1 VO 

(4) 

where Pr(Q, E) = M N M N W 1  . . . M 3 M 2 M 1 .  This follows directly from (2) and (3). 

respectively: 
Now, solutions for regions -m c: n < 1 and N < n < m are of the following forms 

q,.(-m < n < 1) = A exp(ikiz) + B exp(-ikn) ( 5 4  

ly,,(N<n<m)=Cexp(ikn) + Dexp(-ikn). (5b) 

The transfer matrix is defined so as to relate the amplitudes of the solutions of the 
Schrodinger equation in the perfectly conducting leads on either side of the chain of 
incommensurate potential V,,(y, Q). If there is an incident wave on the left, one can 
write for the right end of the conducting wire 

where 

exp(-ik) exp(ik) 

1 1 
S =  ( 
6-1 = ( T [ - i k ( N +  I)] 0 

exp[ik(N + l)] 
Now we define the scattering matrix TN by 

Similarly for the left end of the chain, 

From equation (6 ) ,  we have 
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where T N  = OS-'P$'(Q, E)S. Substitutinginto equation (4) 
N 

("+I) = Mi (") 
V N  ,=I *o 

(9) 

From equations (5)-(9) and the definitions of reflectance and transmittance we obtain 

reflectance = IB/AIz = ITfNZ/T;l2 
(10) 

0 transmittance = (1 - (B/AIZ)  = (1 - [TE/TW1*). 

Therefore resistance from the Landauer formula can be written as 

R(E, N) = reflectance/transmittance = IT$/TI lz/(l - lT,!,?/T; Iz). 

2.2. Multifractal analysis 

Multifractal analysis is an adequate tool to look at singular behaviour of a normalized 
measure. We shall begin by considering a partition of the support [0,1] into N intervals 
and defining a measure P, in terms of the normalized transmittance as 

N 

P,  = T @ ) , / C  T, (E) .  
, = 1  

From the definition of transmittance P, 3 0 and E N P ,  = 1. We next define a partition 
function for any real number q and the given probability measure P, in the ith subdivision 
(box) of the support in terms of the qth moment x(q) = P?, 

Y 

Z ( d  = 2. x(4). (11) 
,=I 

The measure is said to be multifractal whenever one has the scaling behaviour 
Zial - N-z(q). P,  - N-*. 

\ ' I  

The definition of the exponent ~ ( q )  is related to the general dimension Dq in the 
following way: 

r(q) = (4 - wq. (12) 
Now, the number of boxes which cover the measure having exponents between cr and 
cr + d a  obeys a scaling behaviour N ,  - Nf(*). 

One can write Z(q) as an integral over the exponent a. 

(13) Z(q) - 1 da N-[*Q-f(*)l, 

The dominant contribution in the integrand in (13) comes from the exponents that are 
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stationary withrespect to cr, i.e. for q = (df/dcr). Thus, r(q) = eq - f(e) and (Y = (dt/  
dq), sincef(e) is independent of q,  by definition. 

Barabisietal(l991) have discussed the multifractal spectraofmulti-affine functions. 
They have generalized the above analysis to note that, for multi-affine functions, a class 
to which the transmittance belongs, the multifractal spectra depend upon the partition 
used. Our analysiscorresponds to their partition characterized by 

The problem essentially boils down to getting a, the scaling exponent for the 
measure, andf(cr) for the number of boxes that cover this measure. Thus the weight 
f(e) as a function of the scaling exponent aof  the measure gives a spectrum of scaling 
exponents and fractal-like dimensions. The numerical technique for computing a and 
f(e) hasbeendiscussedin theliterature(Halseyetal1986,Basuetal1991b). It isknown 
that for the extended case e,,,,, and nmx will converge towards 1 as the system size is 
increased;f(crmi,) andf(cr,,,,,) also behave likewise converging towards 1. So for a large 
system weexpect thatfor extendedstates thef(cu) versuscrcurvewouldshrink toapoint 
(1,l). For a localized state, with increasing system size em,, should tend to 0. This 
corresponds to a large probability (ideally = 1) of getting the electron within the local- 
ization length. At the same time, CY,,,,, diverges, implying exponential decay of prob- 
ability for lengths much larger than the localization length. A critical state, being 
intermediate between extended and localized states, is expected to show some inter- 
mediate behaviour with respect to scaling exponents also. 

= 1. 

3. Results and discussion 

We have carried out numerical calculations for the transmittance in the vicinity of the 
mobility edge for the above model to check the nature of states undergoing the metal- 
insulator transition. We have fixed the value of A to 1 and have studied the behaviour of 
the transition from metal to insulator. The mobility edge has been predicted by Das 
Sarma el a1 (through heuristic arguments) to be at E, = t (2  - A).  But numerical cal- 
culation of inverse localization length (Sutherland and Kohmoto 1987) and trans- 
mittanceversusenergy(Basueta11991a) doesnotshow asharpmobilityedge. Wehave 
shown the variation of transmittance (in figure 1) from -1 (for E FC Ec) to -0 (for 
E > E J .  The energy E, is chosen to be that point at which the transmittance is sig- 
nificantly different from 1 and 0. 

We analysed the character of transmittance for y = 0.1,0.3 and 0.4 in the vicinity of 
E, as a function of system size. In figure l(a) for y = 0.1, we have chosen the energy 
E, = 1, and it is seen that the transition is fairly sharp. Figure l(6) shows the same for 
y = 0.3, and the energy is chosen to be 0.9945. Figure l(c) shows the same for y = 0.4, 
and here the energy is chosen to be 0.982. 

In figure 2, transmittance is studied as a function of the system size at the above 
energies. As seen, there is an indication of a self-similar nature. Figures 2(a), (6) and 
(c) show that the transmittance versus system size for y = 0.3 and 0.4 are similar to one 
another but they differ considerably from that for y = 0.1 at this length scale. 

Thestates forE < E, and E >  E,showdistinct physical nature for the transmittance 
as a function of system size through a scaling relation We. We studied the multifractal 
dimensionf(e) versus scaling exponent (Y for the extended and critical states. Figure 
3(a) showsf(cr) versus @for systems of length 3 X lo4 (-), 2 X lo4 (- . - .- ) and 
lo4 (----) taking all the moments q between -30 and f30 into consideration for a 
pureextendedstatewith y = 0.0.Allthreecurvesfallononeanother. Asseen, the peak 
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-I '\ 

Figure1.TransmittanceversusenergyfaorA = landsyslemsizeIO':(a) y = O.l;(b) y =0.3; 
and (c)  y = 0.4. 
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Figure2.Transmittanceverrualengthfor:(a)y = 0.lfarE = l .o;(b)y  = 0.3forE = 0.9945; 
and (c) y = 0.4 for E = 0.982. 
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Figure 3. Plots of f(a) Venus (Y for: (U) an extended state (U = 0.0) for three system sizes 
8ooO,90M)and 10w0, E = 0.0; ( b )  acriticalstate with y = 0.1 for system sizes50 000,600O0, 
70000and 80Mx). E = 1.0; and (c) acritical state with y = 0.3forsystem s i z e s 4 0 0 0 0 , 5 0 ~  
and 60000, E = 0.9945. (Energies of (aF(c) are the same as those o f  figures Z(a)-(c) 
respectively.) See text for details of curves. 
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Figore 5. Plots of (a) f(u'& and (b)  f(nm,.) versus q for y -  0.1 ( -  - - -), y =  0.3 
(-)and y = 0.4 (-. - ,  -). 

is at (Y = f ( ( ~ )  = 1 and as expected the curve tends to collapse around this point with 
increasing length. The values of f(a,,.) at sizes IO", 2 X 10' and 3 x 10" are 0.8464, 
0.8583 and 0.8643. 

Figure 3(b) shows the same for y = 0.1. The system sizes are 80 000 (- ), 70 000 
(----), MOO0 (-.-.-) and 50000 (---). The state for y=O.1 has a very 
long quasi-period. Within our numerical limitation it is not possible to carry out the 
mnltifractal analysis fully for this y .  The essential feature of this figure is that, with 
increased system size,f(a) versus (Y curves shift inwards as in the extended state, but 
unlike the latter,f(@,,,) decreases with increasing size. Also the curves tend to converge 
on the(Y,,,,"side. Figure3(c)showsf(a')versuscycurvesfory = 0.3. Here themultifractal 
nature of the state resembles critical states. Curves for three system sizes 60000 
(-.-.- ), 50 OOO (-) and40 000 (----)are drawn. There is no shift in aparticular 
direction. The curves seem to oscillate and with ipcrease in system size f(a,,.) and 
f(amar) both show a tendency to fall. This is a typical character of critical states. 

Figure 4 shows the behaviour of a',,,, and a'" with increase in the order of the 
moments for a fixed system size for the three different y values. Figure 4(a) shows a'mx 

versus q for y = 0.1 (----), y = 0.3 (-) and y = 0.4 (- .- .- ) for a system of 
size 60000. The value of q IS varied from -30 to -50. Figure 4(6) shows a',,,,, versus q 
for y = 0.1 (----), y = 0.3 (-)and y = 0.4 (- I - . - )for a system of size 60 000. 
Here q is vaned over a range of 30 to 50. 



Flgure 6. Plot of dol = (emax - e,,,") versus y for sys- 
tem size of 6OooO. 

0 OZWO 0 . W  QMWX) OWlW 
l/NxiOs 

Figure 7. Plots of (a) f ( e d  versus 1/N for q = -200, (b)  f(a..) versus 1 /N for q = 200, 
(c) versus 1/N for q = -200 and (d) em," versus l / N  for q = ZW, here N = length/lO'. 

Figure 5(a) shows that, as we include higher positive values of q in the definition of 
Z(q), f(a,,,3 decreases. Similarly figure 5(b) shows that inclusion of higher negative 
values of q leads to a decrease off(amsx). If bothf(amsx) andf(amxn) tend to zero, as 
seems to be the case in these figures, this is a signature of multifractality. 

Figure 6 shows the metal-insulator transition of this model of size 60 000 with respect 
to increasing y values. For y = 0, states are extended, and amm = a,,,,, = 1, f(am,) = 
f(a,d = 1 areexpected. Here we plot d e  = a,,,= - a,,,,velsusy. Foranextendedstate 
d a  = 0 is expected. In the curve at y = 0, d a  = 0.03. This is because of a finite-size 
effect. As y values increase, d a  also increases. The da values remain at greater than 0 
but less than 0.5. At y = 1, all states become extended again as seen by the drop in dm 
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values. But afterthat dadiverges, forallvaluesof y > 1. Thisischaracteristicof localized 
states. 

Next we do a finite-size scaling analysis on the multifractal properties with the 
following ansatz: 

P K Thakur et ai 

XN = X ,  3. (C/Nf l )  (IC ' 0) (14) 
where X could be either a orf(a). Figure 7 shows the fitted curves and extrapolated 
values, for system size N-t 10. of amU,f(amax), am,, andf(a,,J obtainedin this way for 

versus 1/N, where N denotes the length of the system scaled down by 10'. The lengths 
are varied over a range lo4 to IO' in steps of lo4 and the corresponding values of these 
quantities noted. Then using a non-linear search method we calculated the parameters 
X,, Cand the exponent p for each of the four cases. Figure 7(a) showsf(a,,,) versus 1/ 
N, and the extrapolated value at N - t  is 0.045. Figure 7(6) showsf(ami,) versus 1/ 
N .  and the extrapolated value at 1 / N  = 0 is 0.469, so it is true that the multifractal 
characteristicf(a,,J hasdecreased toavalue reasonably lower than 1. Figurell(c) shows 
a,,,, versus 1/N; for 1/N = 0, am, = 1.188. Figure 7(d)  shows aminversus 1/N; at 1/N = 
0, the extrapolated value of a,,, is 0.922, so d a  = LY,,, - am," > 0. These clearly show 
the multifractal characteristics of transmittance at the critical state. All the results show 
that the scaling exponent behaves neither like the extended case nor like the localized 
case. 

Figure 8 shows the evolution of resistance with system size. Resistance does not show 
an exponential localization (Thakur and Kuma 1990). Figure 8(a) shows resistance 
versus system size for the model potential with y = 0.1 at the mobility edge E, = 1.0. 
Figure 8{b) shows the same for y = 0.3 at the corresponding E, = 0.9945 and figure 8(c) 
shows the same for y = 0.4 at E, = 0.982. In all three cases, it is explicitly seen that the 
resistance does not exhibit exponential behaviour. Figure 8(d) shows the same for a 
localized state. The difference between critical-state and localized-state behaviour is 
clearly observed. 

q =  +200 - and y = 0.3. We have plotted the curves of amax, !(amax), am,, and f(am,") 

4. Conclusion 

In conclusion we point out that critical states are seen in the vicinity of the metal- 
insulator transition. The significantly different behaviour of transmittance in the critical 
state from that of a metal (extended states) and an insulator (localized states) is well 
understood by acareful multifractal study. Also the behaviour of resistance distinguishes 
very well the critical-like states from localized states. The standard techniques like 
finding the inverse localization length and participation ratio do not work satisfactorily 
for characterization of critical states. We believe that our analysis is much more fruitful 
in understanding the nature of states in the vicinity of ametal-insulator transition. 
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