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Abstract. Electronic transmittance in a one-dimensional tight-binding incommensurate
potential has been studied numerically for states in the vicinity of the mobility edge by
multifractal analysis. Multifractal analysis shows a spectrum of scaling exponents for the
normalized transmittance (over the system size) near the transition from extended to
localized states. For the critical states we have computed dimensionless resistance related
through the Landauer formula and shown that it does not have an exponential nature.

1. Introduction

Electronic states in incommensurate potentials exhibit some novel features that are
distinct compared with those for periodic and random potentials. Several investigations
have been carried out for a one-dimensional tight-binding model (Harper 1955, Aubry
and Andre 1980, Kohmoto 1983, Ostlund and Pandit 1984, Basu et al 1991a):

Y, +¥,  +V,(Q¥,=EY¥Y, (1)

where |W,|? is the local probability amplitude, V,(Q) is the site diagonal potential with
O being an irrational number and E is the energy. For various forms of V,{Q), the
properties of the wavefunctions, their phases, the energy spectra and electronic transport
have been studied so far mostly by numerical techniques (Kohmoto 1983, Ostlund and
Pandit 1984, Basu et al 1991a).

The model defined by V,(Q) = 4 cos(2xnQ), which is known as the Harper model
(Harper 1955, Aubry and Andre 1980), undergoes a metal-insulator transition such that
the states for A < 2 are extended, those for A > 2 are localized and the state at A =2
becomes critical. Standard techniques like evaluation of Lyapunov exponents or the
participation ratio do not seem to be appropriate for the characterization of the novel
features present in the critical state. These have also been found in the Fibonacci model
potential in one dimension.

Inrecent years a multifractal analysis for the characterization of such states in various
quasi-periodic model potentials has been proposed. This clearly distinguishes the critical
state (its energy spectra, integrated density of states, probability amplitudes) from
extended or localized states (Aubry and Andre 1980, Kohmoto et al 1983, Kohmoto
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1983). A class of more general model potentials has also been introduced, which exhibits
an energy-dependent transition (mobility edge) in one-dimensional systems (Soukoulis
and Economou 1982, Hiramoto and Kohmoto 1989, Das Sarma et al 1990). These
potentials are deterministic and yet different in their behaviour from random potentials
in the sense that, in one dimension, all eigenfunctions are not localized. Instead there
appear metal-insulator transitions separating extended and localized states. The poten-
tial V,,(y, Q) = A cos(2xn'Q) having an inhomogeneous period On"~! has been of much
interest in recent years (Griniasty and Fishman 1988, Thouless 1988, Das Sarma er ai
1990, Basu ef al 1991a). It exhibits the following properties.

(i) It has mobility edges for 0 < y << 1,2 > A (Das Sarma et al 1990, Basu et 2l 1991a).

(ii) All states (except states at the band centre) for 1 < y <2 are localized. But the
nature of the localized state at the band centre is different in the sense that the Lyapunov
exponent vanishes very slowly there, as discussed by Thouless (Hiramoto and Kohmoto
1989). Localization in this system is different from purely exponential localization as in
random chains. ,

(iii) Exponential localization as in a random system is shown by perturbative cal-
culation for y = 2 (Griniasty and Fishman 1988).

Recently Das Sarma et af (1990) have calculated the wavefunction, electronic density
of states and Lyapunov exponent for the above model in the regime 0 < y < 1, which
shows an energy-dependent transition at £ = (2 ~ 1). We have studied electronic trans- -
mittance and the phase of the outgoing electron for the above model potential in different
energy regimes, with special emphasis on stages near the mobility edge (Basu et af
1991a). Fractal aspects for the spatial extensiton of the wavefunction have also been
discussed before for one-dimensional disordered systems (Soukoulis and Economou
1989, Roman and Wiecko 1986). The modet potential V,(y, @) = A cos(2zn?Q) for
0 <y <1 is interesting in the sense that it has a gapless spectrum with a mobility
edge even in one dimension. We have used the transfer-matrix method to study the
transmittance for an electron through chains (of sizes ~10°) with such a potential and
attached in perfectly conducting leads or wires at both ends. The transmittance at
the far end of the chain carries information of the effective scattering due to the
incommensurate potential through the scattering matrix, which connects the solution
on the two conducting sides of the chain.

In a series of earlier works (Aoki 1983, 1986, Schreiber 1985a, b, 1990, Kramer et al
1988, Ono et al 1989) it was asserted that the wavefunctions in random potentials were
fractals. However, since they had studied the inverse participation ratio alone, their
analysis could not probe the multifractal nature of these objects. In a recent com-
munication Schreiber and Grussbach (1991) have carried out a multifractal analysis of
one critical wavefunction in a three-dimensional random potential and one localized
wavefunction in a one-dimensional random chain, for a single system size each. They
have concluded that both the critical and the localized states are multifractal and
comment ‘it will therefore be an interesting problem to investigate whether the metal-
insulator transition can be identified from such an analysis in some way’. In an earlier
work on Azbel resonances (Basu et al 1991a) we have shown that the behaviour of the
f () versus a curves as functions of system size clearly distinguishes between extended,
localized and resonant states, Further, this analysis does not depend on individual states,
but is a common feature of all similar states. In this communication we suggest this
procedure to be a sensitive test to differentiate between extended, critical and localized
states,
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2. Formalism

2.1. Transfer-matrix method
Equation (1) can be written alternatively in terms of a transfer matrix at the site n as

M, (v, 0)6, = B, @
Moy, 0) = (E Ve(r.9) _;) en=(‘i:_l) B

and V,(y, Q) = A cos(2xn?(Q) where ( is an irrational number for our work chosen to
be (V5 — 1)/2. The wavefunction amplitudes at the sites ¥ — 1 and N are related to the
initial points 0 and 1 through the following relation:

(z: ) - PYQ.B) (zu) | ' @

where PY(Q, E) = MyMy._, . . . M3M,M,. This follows directly from (2) and (3).
Now solutions for regmns —w<p<1and N<n <= are of the following forms
respectwely

W, (— <n < 1) = Aexp(ikn) + B exp(—ikn) © (5a)
Y, (N < n <) = Cexp(ikn) + D exp(—ikn). (5b)

The transfer matrix is defined so as to reiate the amplitudes of the solutions of the
Schrddinger equation in the perfectly conducting leads on either side of the chain of
incommensurate potential V,(y, Q). If there is an incident wave on the left, one can
write for the right end of the conducting wire

(o) =507 (o)

3 (exp(—ik) exp(ik))

=\, . .

g1 (exp[ ik(N+1)] 0 )
0 explik(N + 1)]

where
(6)

Now we define the scattering matrix T by

B)-n()

Similarly for the left end of the chain,

(*)-s(). ®

From equation (6), we have
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s (2)-rra.os()

(g) - 65-1PY(Q, E)S (j) =T, (j)

where Ty = 85~ PY(Q, E)S. Substituting into equation (4)
(w~+1) =ﬁM" (wl), o
Yu i=1 Yo
From equations (5)-(9) and the definitions of reflectance and transmittance we obtain
reflectance = |B/A[* = |T¥/TH ?
@ transmittance = (1 — |B/APY = (1 = |TH/THP). (19)

Therefore resistance from the Landauer formula can be written as

R(E, N) = reflectance/transmittance = | T% /TN |2/(1 = | T} /T ).

2.2. Muldifractal analysis

Multifractal analysis is an adequate 100l to look at singular bebaviour of a normalized
measure. We shall begin by considering a partition of the support [0, 1] into N intervals
and defining a measure P; in terms of the normalized transmittance as

N
P = T;(E)/ 2, TAE).

From the definition of transmittance P; = 0 and Z¥ P, = 1. We next define a partition
function for any real number g and the given probability measure P, in the ith subdivision
(box} of the support in terms of the gth moment (g} = P9,

N
Z(q) = %x(q)- (11}

The measure is said to be multifractal whenever one has the scaling behaviour
Z(q) ~ N~*@), P, ~ N2,
The definition of the exponent t(¢) is related to the general dimension D, in the
following way:
1(g) = {g - DD, (12)

Now, the number of boxes which cover the measure having exponents between & and
& + dev obeys a scaling behaviour N, ~ Nf(@),
One can write Z(g) as an integral over the exponent g,
Z(g) ~fdaN'["’Q’f("‘)]. (13)

The dominant contribution in the integrand in (13) comes from the exponents that are
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stationary with respect to a, i.¢. for ¢ = (df/de). Thus, 7(q) = ag — f(«) and a = (dz/
dg), since f(«) is independent of ¢, by definition.

Barabasi eraf (1991) have discussed the multifractal spectra of multi-affine functions.
They have generalized the above analysis to note that, for multi-affine functions, a class
to which the transmittance belongs, the multifractal spectra depend upon the partition
used. Qur analysis corresponds to their partition characterized by g = 1.

The problem essentially boils down to geiting w, the scaling exponent for the
measure, and f{«) for the number of boxes that cover this measure. Thus the weight
J(e) as a function of the scaling exponent a of the measure gives a spectrum of scaling
exponents and fractal-like dimensions. The numerical technique for computing ¢« and
f(@)hasbeen discussed in the literature (Halsey ef af 1986, Basu et al 1991b). It is known
that for the extended case &y, and @, will converge towards 1 as the system size is
increased; f{ @) and f{o,,,) also behave likewise converging towards 1. So for alarge
system we expect that for extended states the f (&) versus & curve would shrink to a point
(1, 1). For a localized state, with increasing system size ay,, should tend to 0. This
corresponds to a large probabitlity (ideally = 1) of getting the electron within the local-
ization length. At the same time, a,, diverges, implying exponential decay of prob-
ability for lengths much larger than the localization length. A critical state, being
intermediate between extended and localized states, is expected to show some inter-
mediate behaviour with respect to scaling exponents also.

3. Results and discussion

We have carried out numerical calculations for the transmittance in the vicinity of the
mobility edge for the above model to check the nature of states undergoing the metal-
insulator transition. We have fixed the value of A to 1 and have studied the behaviour of
the transition from metal to insulator. The mobility edge has been predicted by Das
Sarma et al (through heuristic arguments) to be at E, = * (2 — 1). But numerical cal-
culation of inverse localization length (Sutherland and Kohmoto 1987) and trans-
mittance versus energy {Basu ef al 1991a) does not show a sharp mobility edge. We have
shown the variation of transmittance (in figure 1) from ~1 (for E< E,) to ~0 (for
E > E,). The energy E, is chosen to be that point at which the transmittance is sig-
nificantly different from 1 and 0.

We analysed the character of transmittance for y = 0.1, 0.3 and 0.4 in the vicinity of
E. as a function of system size. In figure 1{2) for ¥ = 0.1, we have chosen the energy
E. =1, and it is seen that the transition is fairly sharp. Figure 1(b) shows the same for
y = 0.3, and the energy is chosen to be 0.9945. Figure 1(¢) shows the same for y = 0.4,
and here the energy is chosen to be 0.982.

In figure 2, transmittance is studied as a function of the system size at the above
energies. As seen, there is an indication of a self-similar nature. Figures 2(a), (b) and
(c) show that the transmittance versus system size for y = 0.3 and 0.4 are similar to one
another but they differ considerably from that for y = 0.1 at this length scale.

The states for E < E,and E > E_show distinct physical nature for the transmittance
as a function of system size through a scaling relation N™¢. We studied the multifractal
dimension f(«) versus scaling exponent « for the extended and critical states. Figure
3(a) shows f{a) versus « for systems of length 3 % 10%( ), 2 X 104 (==~ ) and
10* (~—~-) taking all the moments ¢ between —30 and +30 into consideration for a
pure extended state with y = 0.0. All three curves fall on one another. As seen, the peak
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Figure 1. Transmittance versus energy for L = 1and systemsize 10% (2) y = 0.1; (b) ¥y = 0.3;
and {c)y = 0.4.
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Figure 2. Transmittance versus length for: (@) y = 0.1for E = 1.0;(b) y = 0.3 for E = 0.9945;
and (¢) y = 0.4 for E = 0.982.
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Figure 3. Plots of f(a) versus « for: (a) an extended state (y = 0.0) for three system sizes
8000, 5000 and 10000, £ = 0.0; () a critical state with ¥ = 0.1 for system sizes 50 000, 60000,
70000 and 830000, E = 1.0; and (c) a critical state with y = 0.3 for system sizes 40000, 50 000
and 60000, £=0.9945. (Energies of (a)-(c) are the same as those of figures 2(a)~{c)
respectively.) See text for details of curves.
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Figure 5. Plots of (@) f(@uw) and () f(&mn) versus g for y=0.1(-———), y=03
{ Yandy=04(—-—"— ).

is at @ = f(a) = 1 and as expected the curve tends to collapse around this point with
increasing length. The values of f(a,,;,) at sizes 10%, 2 X 10* and 3 x 10* are 0.8464,
0.8583 and 0.8643. .

Figure 3(b) shows the same for y = 0.1. The system sizes are 80 000 ( ), 70 000
(——=-), 60000 (—-—-~— ) and 50000 (———). The state for y =0.1 has a very
long quasi-period. Within our numerical limitation it is not possible to carry out the
multifractal analysis fully for this y. The essential feature of this figure is that, with
increased system size, f(@) versus a curves shift inwards as in the extended state, but
unlike the latter, f (ay,,) decreases with increasing size. Also the curves tend to converge
onthe a;, side. Figure 3(c) shows f{a) versus a’curves for y = 0.3. Here the multifractal
nature of the state resembles critical states. Curves for three system sizes 60000
(-—- ), 50 G00( ) and 40 000 (- ———) are drawn. There is noshift in a particular
direction. The curves seem to oscillate and with increase in system size f(ap,) and
f(&max) both show a tendency to fall. This is a typical character of critical states.

Figure 4 shows the behaviour of @y, and am, with increase in the order of the
moments for a fixed system size for the three different y values. Figure 4(a) shows ap,,

versus ¢ for y = 0.1 (-——-), y=0.3 ( yand y =04 (--—-— } for a system of
size 60 000. The value of g is varied from —30 to - 50. Figure 4(b) shows &y, versus g
fory=0.1(----),y =0.3( Yandy =0.4(—+—-— ) for a system of size 60 000.

Here g is varied over a range of 30 to 30.
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Figure 7. Plots of (a)} f(a,..} versus 1/N for ¢ = =200, (b) f (o) versus 1/N for g = 200,
() sy versus 1/N for ¢ = —200 and {d} &, versus 1/N for ¢ = 200; here N = length/10*,

Figure 5(a) shows that, as we include higher positive values of ¢ in the definition of
Z{q), f(@mi,} decreases. Similarly figure 5(b) shows that inclusion of higher negative
values of g leads to a decrease of f(ay,). If both f(ay.) and f(any,) tend to zero, as
seerns to be the case in these figures, this is a signature of multifractality.

Figure 6 shows the metal-insulator transition of this model of size 60 000 with respect
to increasing y values. For y = 0, states are extended, and ay, = dpey = 1, flom) =
Fletmay) = 1areexpected. Here we plot der = arya, — &, versus y. For an extended state
da = 0 is expected. In the curve at y =0, da = 0.03. This is because of a finite-size
effect. As y values increase, du also increases. The da values remain at greater than 0
but less than 0.5. At y =1, all states become extended again as seen by the drop in de
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values. But after that da- diverges, foral/ values of y > 1. This is characteristicof localized
states,

Next we do a finite-size scaling analysis on the multifractal properties with the
following ansatz:

Xy =X + (C/N¥) (u >0) (14)

where X could be either o or f(«). Figure 7 shows the fitted curves and extrapolated
values, for system size N — %0, 0f @mays F{¥max)s Femin A0 f {@vin) Obtained in this way for
g = *200 and v = 0.3. We have plotied the curves of & f(Fmay)> Fmin and f(ags)
versus 1/N, where N denotes the length of the system scaled down by 10* The lengths
are varied over a range 10* to 10° in steps of 10* and the corresponding values of these
quantities noted. Then using a non-linear search method we calculated the parameters
X., Cand the exponent u for each of the four cases. Figure 7(a) shows f (c,,,) versus 1/
N, and the extrapolated value at N — s is 0.045. Figure 7(b) shows f(a,,,) versus 1/
N, and the extrapolated value at 1/N =0 is 0.469, so it is true that the multifractal
characteristic f (&, has decreased to a value reasonably lower than 1. Figure 7(c) shows
¥ vErsus 1/N; for 1/N = 0, ap,,, = 1.188. Figure 7(d) shows a,;, versus 1/N;at 1/N =
0, the extrapolated value of &, is 0.922, s0 dor = @yay — @i > 0. These clearly show
the multifractal characteristics of transmittance at the critical state. All the results show
that the scaling exponent behaves neither like the extended case nor like the localized
case.

Figure 8 shows the evolution of resistance with system size. Resistance does not show
an exponential localization (Thakur and Kumar 1990). Figure 8(a) shows resistance
versus system size for the model potential with ¥ = 0.1 at the mobility edge E, = 1.0.
Figure 8(b) shows the same for y = 0.3 at the corresponding E. = 0.9945 and figure 8(c)
shows the same for y = 0.4 at £, = 0.982. In all three cases, it is explicitly seen that the
resistance does not exhibit exponential behaviour. Figure 8(d) shows the same for a
localized state, The difference between critical-state and localized-state behaviour is
clearly observed.

4. Conclusion

In conclusion we point out that critical states are seen in the vicinity of the metal-
insulator transition. The significantly different behaviour of transmittance in the critica)
state from that of a metal (extended states) and an insulator (localized states) is well
understood by acareful multifractal study. Also the behaviour of resistance distinguishes
very well the critical-like states from localized states. The standard techniques like
finding the inverse localization length and participation ratio do not work satisfactorily
for characterization of critical states. We believe that our analysis is much more fruitful
in understanding the nature of states in the vicinity of a metal-insulator transition.
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